产品说明书

常见问题及解决方法

问题	可能原因	解决方法	
	洗板不充分	将洗涤液注入反应孔充分洗涤,彻底拍干孔中液体	
	酶结合物过量	检查酶稀释度,按说明书标识的稀释度稀释	
高背景或阴性		加底物前检查底物是否为透明无色,请勿用变蓝的	
对照值偏高	底物污染	底物,重新用新的底物试验	
	阴性对照孔被阳性对照	注意洗涤时不要把洗液溢出孔外, 不使阴阳对照孔	
	污染	液体涟接一起	
	不同批次试剂混用	检查试剂批号,请勿用不同批次试剂	
	试剂过期	检查试剂盒有效期,请勿用过期试剂	
	孵育时间过短	按说明书中规定的时间孵育	
显色信号弱	试剂污染	检查试剂是否污染,请勿用污染的试剂	
3ECIL 349	酶标仪滤光片不匹配	检查酶标仪设置及滤光片是否匹配	
	试剂盒平衡不充分	确保试剂盒试验前平衡至室温	
	显色时间不够	增加底物显色时间	
	检测抗体、酶、或显色	检查试验操作流程,重复试验	
无显色信号	剂漏加	但是风水下加生,主义风地	
九亚己旧与	酶被叠氮钠污染	请使用重新配制的试剂	
	试剂添加顺序有误	检查复核试验添加顺序、流程,重复试验	
	样品中靶标物含量低或	设置阳性对照, 重复实验	
标曲佳但样品	样品中无靶标物	反且阳住对照, 里复头短	
孔无信号	样品基质效应影响检测	重新稀释样品后复测	
标曲佳但样品	样品中待检物含量超过	重新稀释样品后复测	
信号偏高	标准曲线范围	里利	
边缘效应	孵育温度不均衡	孵育时每步均使用新的封板胶纸, 避免在环境温度	
坦缘双型		变化大的地方孵育,勿叠放反应板	

小鼠高迁移率族蛋白B1 ELISA试剂盒

产品编号: AC16679

适用于小鼠血清、血浆或细胞培养上清液等样本

仅供研究,不用于临床诊断

订购热线: 400-900-4166 *技术支持邮

箱: service@acmec-e.com 公司官网: www.acmec-e.com

目 录

背景介绍	01
检测原理	01
注意事项	02
安全提示	02
试剂盒组成及储存	03
自备实验器材	03
样品收集及储存	04
试剂准备	04
检测步骤	06
结果判断	06
参数表征	07
参考文献	09
常见问题分析及解决办法	10

参考文献:

- 1. Lotze, M.T. and K.J. Tracey (2005) Nat. Rev. Immunol. 5:331.
- 2.Yang, H. et al. (2005) J. Leukoc. Biol. 78:1.
- 3. Dumitriu, I.E. et al. (2005) Trends Immunol. 26:381.
- 4. Degryse, B. and M. de Virgilio (2003) FEBS Lett. 553:11.
- 5.Wen, L. et al. (1989) Nucleic Acids Res. 17:1197.
- 6.Bonaldi, T. et al. (2003) EMBO J. 22:5551.
- 7.Muller, S. et al. (2001) EMBO J. 20:4337.
- 8. Bustin, M. (1999) Mol. Cell. Biol. 19:5237.
- 9.Wang, H. et al. (1999) Science. 285:248.
- 10.Dimitriu, I.E. et al. (2005) J. Immunol. 174:7506.
- 11. Najima, Y. et al. (2005) J. Biol. Chem. 280:27523.
- 12.Gardella, S. et al. (2002) EMBO Rep. 3:995.

2. 灵敏度:

最低可检测小鼠HMGB1浓度达0.31ng/ml,

20个零标准品浓度OD的平均值加上两个标准差,计算相应的可检测浓度。

3. 特异性:

与人, 大鼠, 牛和猪HMGB1 有101%的同源性。

4. 重复性:

板内, 板间变异系数<10%。

5. 回收率:

在选取的健康小鼠血浆、细胞培养上清中加入3个不同浓度水平的小鼠HMGB1, 计算回收率。

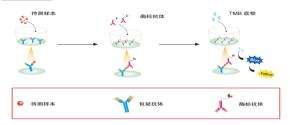
样本类型	平均回收率(%)	范围(%)	
血浆	92	89-94	
细胞培养上清	105	93-116	

6. 线性稀释:

分别在选取的4份健康小鼠血浆和细胞培养上清中加入高浓度小鼠HMGB1,在标准曲线动力学范围内进行稀释,评估线性。

稀释比例	回收率(%)	血浆	细胞培养上清
1:2	平均回收率(%)	99	101
1.2	范围(%)	92-106	91-111
1:4	平均回收率(%)	104	104
1.4	范围(%)	97-111	95-112
1:8	平均回收率(%)	99	94
1.0	范围(%)	97-101	85-103
1:16	平均回收率(%)	104	97
1:16	范围(%)	102-106	87-106

背景介绍:


高迁移率族蛋白(HMGB1),以前称为HMG-1或两性蛋白,是非组蛋白染色体蛋白的高迁移率族盒家族的成员。HMGB1在几乎所有细胞中均以高水平表达。它最初被发现是一种可以弯曲DNA的核蛋白。这种弯曲稳定了核小体的形成,并在DNA结合蛋白募集后调节选择基因的表达。现在已知HMGB1也可以在细胞外起作用,既作为促进单核细胞迁移和细胞因子分泌的炎症介质,又作为T细胞 – 树突细胞相互作用的介质。

检测原理:

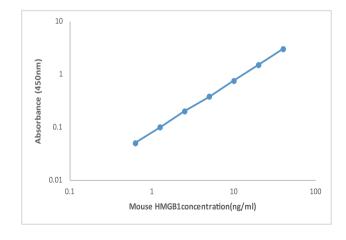
ACMEC ELISA试剂盒采用基于双抗体夹心法的酶联免疫吸附检测技术。HMGB1捕获抗体已预包被于酶标板上,当同时加入样本或标准品和HRP耦连的抗小鼠HMGB1抗体时,其中HMGB1的不同位点会与捕获抗体和HRP偶联的抗小鼠HMGB1抗体结合,形成夹心复合物,锚定在固相载体板上,其它游离的成分通过洗涤的过程被除去。最后加入显色剂,若样本中存在HMGB1将会形成免疫复合物,辣根过氧化物酶会催化无色的显色剂氧化成蓝色物质,在加入终止液后呈黄色。通过酶标仪检测,读其450nm处的OD值,HMGB1浓度与OD450值之间呈正比,通过参考品绘制标准曲线,对照未知样本中OD值,即可算出标本中HMGB1浓度。

产品说明书

原理图:

注意事项:

- 1 试剂盒应在有效期内使用,请不要使用过期的试剂。
- 2.试剂盒未使用时应保存在2-8℃冰箱,已复溶但未用完的标准品,请丢弃。
- 3.试剂盒使用前请在室温恢复30min,且充分混匀试剂盒里的各种成份及制备的 样品。
- 4.在试验中标准品和样本建议作复孔检测,且加入试剂的顺序应保持一致。
- 5.为避免交叉污染,请在试验中使用1次性试管,枪头,封板膜(※)及洁净塑料容器。
- 6.浓缩检测抗体的体积较少,在运输过程中微量液体会沾到管壁及瓶盖上,使用 前请离心处理(5-10S即可),使管壁上的液体集中在管底部,取用时,请用移液 器小心吹打几次。
- 7.除了试剂盒中的浓缩洗涤液和终止液可以通用外,请不要使用其他来源试剂盒 内含的 试剂代替本试剂盒中的某单个组分。
- 8.为保证结果准确,每次检测均需做标准曲线。


安全提示:

试剂盒中的终止液为酸性溶液,操作人员在使用时请带上手套并注意防护; 在操作过程中也要避免试剂接触皮肤和眼睛,如果不慎接触,请用大量清水清 洗;检测血液样本及其它体液样本时,请按国家生物实验室安全防护有关管理规 定执行。

参数表征:

1. 数据及标准曲线

标准品浓度(ng/ml)	OD值1	OD值2	平均值	矫正值
0	0.049	0.053	0.051	-
0.63	0.182	0.179	0.181	0.13
1.25	0.21	0.207	0.209	0.157
2.5	0.312	0.308	0.31	0.259
5	0.496	0.489	0.493	0.441
10	0.806	0.794	0.8	0.749
20	1.312	1.293	1.303	1.252
40	2.138	2.107	2.123	2.071

本图仅供参考,应以当次试验标准品绘制的标准曲线计算小鼠HMGB1的样本含量。

6.洗涤方法:

- 自动洗板: 甩尽酶标板孔中液体, 在厚迭吸水纸上拍干, 注入洗涤液为300ul/ 孔.;注与吸出间隔为30秒, 洗板5次。
- 手工洗板: 甩尽酶标板孔中液体, 在厚迭吸水纸上拍干, 用洗瓶加入洗涤液 300ul/孔, 静止30秒后甩净酶标板孔中液体, 在厚迭的吸水纸上拍干, 洗板5次。

检测步骤:

实验前30 min.拿出试剂盒, 恢复至室温

加入50ul 标准品或检测样本,并加入50ul 样本稀释液,同时加入 100ul检测抗体工作液至反应孔中,吹吸混匀后,封板于4℃过夜(16–18h)孵育

加入100ul 显色底物至反应孔中, 封板后于室温 (25±2℃) 避光显色10-30min

加入50 µ I 终止液,即刻用酶标仪450nm波长下测量OD值(5分钟内)

结果判断:

- 1. 用酶标仪450nm波长测定OD值。选择双波长检测,参考波长为630nm。如不能进行双波长检测,请用450nm的OD测定值减去630nm的OD测定值。
- 2. 计算标准品、样品的平均OD值:每个标准品和标本的OD值应减去零孔的OD值
- 3. 以标准品浓度为横坐标, 吸光度OD值为纵坐标, 用软件绘制标准曲线, 样品中HMGB1含量可通过对应OD值由标准曲线换算出相应的浓度。
- 若标本OD值高于标准曲线上限,应做适当稀释后重新检测,计算浓度时再乘以稀释倍数。

试剂盒组成及储存:

试剂盒组成	规格 (96T)	规格 (48T)	保存条件
抗体预包被酶标板	8*12	8*6	2–8℃
标准品	1支	1支	2–8℃
标准品稀释液	0.65ml/支	0.65ml/支	2–8℃
样本稀释液	16 ml/瓶	16 ml/瓶	2–8℃
浓缩检测抗体	60 ul(200X)	30 ul(200X)	2–8℃
检测抗体稀释液	16 ml/瓶	16 ml/瓶	2–8℃
浓缩洗涤液(20×)	30 ml/瓶	30 ml/瓶	2–8℃
显色底物(避光)	12 ml/瓶	12 ml/瓶	2–8℃
终止液	12 ml/瓶	12 ml/瓶	2–8℃
封板胶纸	4张	2张	2–8℃
说明书	1份	1份	

自备实验器材(不提供,可代购)

- 1. 酶标仪(主波长450nm,参考波长630nm)
- 2. 高精度移液器及一次性吸头: 0.5-10,2-20,20-200,200-1000 µI
- 3. 洗板机或洗瓶
- 4. 4℃冰箱
- 5 双蒸水,去离子水,量筒等

06

03

产品说明书

样本收集及储存:

1.细胞培养上清:

将细胞培养基移至无菌离心管,在4℃条件下1000×g离心10min,然后将上清等量分装于小EP管并于-20℃下保存(24小时内检测可放入2-8℃储存), 避免反复冻融。

2.血清样本:

室温血液自然凝固20min后,在 $^{\circ}$ C条件下1000×g离心10min,然后将上清等量分装于小EP管并于 $^{\circ}$ 20°C下保存(24小时内检测可放入2 $^{\circ}$ 8°C储存),保存过程中如有沉淀,请再次离心,避免反复冻融。

3. 血浆样本:

将全血收集到含抗血凝剂的管中,根据标本的实际要求选择EDTA, 柠檬酸钠或肝素作为抗凝剂, 混合20min, 在4 $^{\circ}$ 条件下1000×g离心10min, 然后将上清等量分装于小EP管并于 $^{\circ}$ 20 $^{\circ}$ 下保存(24小时内检测可放入2 $^{\circ}$ 8 $^{\circ}$ 6储存), 避免反复冻融。

※注意:血清血浆样本避免使用溶血、高血脂样本,以免影响检测结果;如果样本中的靶标物检测浓度高于标准品的最高值,请将样品做适当倍数稀释后检测,建议正式实验前做预实验以确定稀释倍数。

试剂准备:

- 1. 试剂回温: 首先在实验前30min将试剂盒, 待测样本放置于室温下, 浓缩洗涤液如出现结晶, 请放入37℃温浴直到结晶全部溶解。
- 2. 配制洗涤液: 预先计算好稀释后的洗涤液使用体积,然后用双蒸水或去离子水 将20倍浓缩洗涤液稀释成1倍应用液,未用完的浓缩洗涤液放入4℃冰箱保 存。
- 3. 标准品梯度稀释:加入标准品稀释液0.65ml至冻干标准品中,静置15分钟待其完全溶解后轻轻混匀(浓度为100ng/ml),然后按照以下浓度用样本稀释液进行稀释:40(400ul标准品原液+600ul样本稀释液)、20、10、5、2.5、1.25、0.63、0ng/ml进行稀释。复溶的标准品原液(100ng/ml)未用完的应废弃或根据需要按照一次用量分装,并将其贮存在-20~-80℃冰箱,具体如下图。

4. 检测抗体工作液:预先计算好试验所需用量,用检测抗体稀释液将200倍检测抗体浓缩液稀释成1倍应用工作液(稀释前充分混匀),请在30分钟内加入到反应孔中。

检测抗体工作液具体稀释方法如下:

板条	浓缩检测抗体(1:200): µL	检测抗体稀释液: μL
2	10	1990
4	20	3980
6	30	5970
8	40	7960
10	50	9950
12	60	11940

04 05