

尿酸酶活性检测试剂盒说明书

微量法

货号: AC10702 **规格:**100T/48S

产品内容: 使用前请认真核对试剂体积与瓶内体积是否一致, 有疑问请及时联系本公司工作人员。

试剂名称	规格 保存条件	
提取液	液体 60 mL×1 瓶	4℃保存
试剂一	液体 30 mL×1 瓶	4℃保存
试剂二	粉剂×2 瓶	4℃保存
试剂三	粉剂×1 瓶	4℃保存
试剂四	粉剂×1 瓶	4℃保存
试剂五	粉剂×1 瓶	-20℃保存
试剂六	液体 6 mL×1 瓶	4℃保存
标准品	液体 102 μL×1 支	4℃保存

溶液的配制:

- 1、 试剂二: 临用前加入 2 mL 试剂一, 充分混匀后备用; 用不完的试剂 4℃保存。4℃保存 1 周。
- 2、 试剂三: 临用前加入 6 mL 试剂一, 充分混匀后备用; 用不完的试剂 4℃保存。4℃保存 2 周。
- 3、 试剂四: 临用前加入 4 mL 试剂一, 充分混匀后备用; 用不完的试剂 4℃保存。4℃保存 1 周。
- 4、试剂五:粉剂置于瓶内玻璃管中。临用前加入 6 mL 试剂一,充分混匀后备用;用不完的试剂-20℃分装保存,避免反复冻融。-20℃保存 1 周。
- 5、标准品: 临用前加入 898 μL 蒸馏水得到 1 mmol/mL 的过氧化氢溶液。
- 6、工作液 A 的配制:用于样本测定管、空白管及标准管的检测,按照试剂二:试剂三:试剂三:试剂五:试剂六=1:1:1:1:2 的比例配制,根据样本量现配现用,配后建议 2 小时内用完。
- 7、工作液 B 的配制:用于样本对照管的检测,按照试剂二:试剂三:试剂四:试剂五:试剂一= 1:1:2 的比例配制,根据样本量现配现用,配后建议 2 小时内用完。

产品说明:

尿酸酶,又名尿酸氧化酶,是一种参与嘌呤降解途径的氧化酶,可以将尿酸分解为尿囊酸素进而排出体外。 尿酸为嘌呤代谢的终末产物,积累过多将导致通风、肾病、心血管疾病等多种疾病的发生。尿酸酶在尿酸相关疾病的临床检测以及治疗中有着重要意义。

尿酸酶催化尿酸分解为尿囊素、 CO_2 和 H_2O_2 , H_2O_2 氧化亚铁氰化钾中的 Fe^{2+} 生成 Fe^{3+} , Fe^{3+} 进一步与 4-氨基安替比林和酚反应生成红色醌类化合物,在 505 nm 处有特征吸收峰,通过测定 505 nm 处的吸光值来反映尿酸酶的活性。

注意:实验之前建议选择 2-3 个预期差异大的样本做预实验。如果样本吸光值不在测量范围内建议稀释或者增加样本量进行检测。

需自备的仪器和用品:

可见分光光度计/酶标仪、台式低温离心机、水浴锅/恒温培养箱、微量玻璃比色皿/96 孔板、可调式移液枪、研钵/匀浆器、冰、EP 管、蒸馏水。

操作步骤:

一、样本处理(可适当调整待测样本量,具体比例可以参考文献)

组织:按照组织质量(g):提取液体积(mL)为 1:5~10 的比例(建议称取约 0.1 g 组织,加入 1 mL 提取液)进行冰浴匀浆,然后 10000 rpm,4 \mathbb{C} ,离心 10 min,取上清置于冰上待测。

细菌或细胞 先收集细菌或细胞到离心管内,离心后弃上清 按照细菌或细胞数量 $(10^4 \, \text{个})$: 提取液体积 (mL) 为 $500\sim1000:1$ 的比例(建议 500 万个细菌或细胞加入 1 mL 提取液),冰浴超声波破碎细菌或细胞(功率 20%或 200 W,超声 3 s,间隔 7 s,总时间 5 min);然后 10000 rpm,4 C,离心 10 min,取上清置于冰上待测。

二、测定步骤

- 1、分光光度计/酶标仪预热 30 min 以上,调节波长至 505 nm,蒸馏水调零。
- 2、将 1 mmol/mL 标准液用蒸馏水稀释为 0.5 μmol/mL 的标准溶液备用。
- 3、操作表: (在 1.5 mL 离心管/96 孔板中)

试剂名称(μL)	对照管	测定管	标准管	空白管
样本	30	30	-	-
标准溶液	-	-	30	-
蒸馏水	-	-	-	30
工作液 A	-	170	170	170
工作液 B	170	-	-	-

混匀,37℃(哺乳动物)或 25℃(其他物种)恒温培养箱中准确反应 30 min。于微量玻璃比色皿/96 孔板,测定 505nm 处吸光值 A,分别记为 A 对照管、A 测定管、A 标准管、A 空白管。计算 $\Delta A = A$ 测定管-A 对照管, ΔA 标准=A 标准管-A 空白管。每个测定管需设一个对照管,建议每次检测配 1-2 个标准管及空白管。

三、尿酸酶活性计算

(1) 按样本质量计算

酶活定义: 在 pH 8.8 的条件下,每克样本每小时分解尿酸产生 1 μmol 的 H_2O_2 定义为一个酶活力单位。 尿酸酶酶活(U/g 质量)= ΔA ÷(ΔA 标准÷C 标准)×V 样本÷(W×V 样本÷V 提取)÷T= ΔA ÷ ΔA 标准÷W

(2) 按蛋白浓度计算

酶活定义:在 pH 8.8 的条件下,每毫克蛋白每小时分解尿酸产生 1 μ mol 的 H_2O_2 定义为一个酶活力单位。 尿酸酶酶活(U/mg prot)= Δ A÷(Δ A 标准÷C 标准)×V 样本÷(Δ C 标准)÷T= Δ A÷ Δ A 标准÷Cpr

(3) 按照细菌数量或细胞计算

酶活定义: 在 pH8.8 的条件下,每 10^4 个细菌或细胞每小时分解尿酸产生 1 μmol 的 H_2O_2 定义为一个酶活力单位。

尿酸酶酶活(U/10⁴ germ)= ΔA ÷(ΔA 标准÷C 标准)×V 样本÷(细菌数量(万个)×V 样本÷V 提取)÷T = ΔA ÷ ΔA 标准÷细菌数量(万个)

C 标准:标准溶液浓度, 0.5 μmol/mL; V 样本:加入的样本体积, 0.03 mL; V 提取:提取液体积, 1 mL; T:酶促反应时间: 0.5 h; Cpr: 样本蛋白浓度, mg/mL; W:样本质量, g。

注意事项:

- 1、A大于1.5时,建议将样本用提取液稀释后再进行测定。
- 2、工作液 A 与工作液 B, 需根据样本量现配现用, 配后建议 2 小时内用完。工作液本身淡黄的, 随着时间的延长, 会由淡黄色变为橘红色、粉色、红色甚至酒红色, 如有变色, 则视为失效, 需重新配置。

实验实例:

1、取 0.1g 小鼠肝脏进行样本处理,取上清稀释 4 倍后按测定步骤操作,使用 96 孔板测定计算 $\Delta A = A$ 测定管-A 对照管=0.804-0.285=0.519, ΔA 标准=A 标准管-A 空白管=0.741-0.051=0.690,按样本质量计算酶活得:尿酸酶酶活(U/g 质量)= $\Delta A \div \Delta A$ 标准÷ $W \times 4$ (稀释倍数)= $0.519 \div 0.690 \div 0.1 \times 4$ (稀释倍数)=30.09 U/g 质量。